当前位置:首页  学术信息  学术沙龙

研途情报站 | 学术信息汇总(10.27)

作者: 访问量:1340发布时间:2023-10-27


报告题目:Lyapunov Stability Theorems for Infinite-delayed Systems and Their Applications

报告人:冯刚 教授(香港城市大学)

报告时间:2023年10月31日(周二)下午2:30

报告地点:明故宫校区A18号楼529报告厅

主办单位:航空航天结构力学及控制全国重点实验室、航空学院、智能装备动力学中心、国际合作处

报告人简介:

Gang Feng received the B.Eng and M.Eng. Degrees in Automatic Control from Nanjing Aeronautical Institute, China in 1982 and in 1984 respectively, and the Ph.D. degree in Electrical Engineering from the University of Melbourne, Australia in 1992.

Professor Feng was a Lecturer/Senior Lecturer at University of New South Wales, 1992-1999. He has been with City University of Hong Kong since 2000, where he is now a Chair Professor of Mechatronic Engineering. He has received Alexander von Humboldt fellowship, the IEEE Computational Intelligence Society Fuzzy Systems Pioneer Award, the IEEE Transactions on Fuzzy Systems Outstanding Paper Award, the outstanding research award and President award of City University of Hong Kong, and several best conference paper awards. He is listed as a SCI highly cited researcher by Clarivate Analytics since 2016. His research interests include intelligent systems and control, networked control systems, and multi-agent systems and control.

Professor Feng is a fellow of IEEE. He has been the Associate Editor of IEEE Trans. Automatic Control, IEEE Trans. on Fuzzy Systems, IEEE Trans. Systems, Man, & Cybernetics, Mechatronics, Journal of Systems Science & Complexity, Journal of Guidance, Navigation & Control, and Journal of Control Theory and Applications. He is also on the advisory board of Unmanned Systems.

报告内容简介:

This talk presents several Lyapuov stability theorems for infinite-delayed systems and their applications. Those theorems are developed based on a general model of infinite-delayed systems and a newly proved key technical lemma. The stability results are more general than existing stability results, and the corresponding conditions are more easily satisfied than existing ones. These new Lyapunov theorems are then applied to the problems of stabilizing both time-invariant and time-varying linear systems with distributed infinite input delays, and the corresponding stabilizing controllers are developed. A distinctive advantage of the Lyapunov based time domain method proposed in this paper over the existing frequency domain method is that the former can be adopted to deal with more general systems, such as time-varying linear systems or even nonlinear systems. Examples are provided to illustrate the effectiveness of our results.


报告题目:Moreau Envelope Based Difference-of-weakly-Convex Reformulation and Algorithm for Bilevel Programs

报告人:张进

报告时间: 10月27日 下午15:30-16:30

报告地点:腾讯会议153 713 584

报告内容摘要:


报告题目:学术讲座—冼卓宇

报告人:冼卓宇

报告时间:10月30日 09.30-11.00

报告地点:519报告厅

报告摘要:


报告题目:物理学院“青年之光”学术论坛—姚秋石

报告人:姚秋石

报告时间:10月31日 14:00-16:00

报告地点:519报告厅

报告摘要:


报告题目:Fintech Lending and Debt Spiral

报告所属学科:应用经济学

报告人:张博辉(香港中文大学(深圳)经管学院)

报告时间:2023年10月31日 14:00-16:00

报告地点:经管学院702室

报告摘要:

We examine whether and how consumers can be trapped in debt spirals in fintech lending markets. With alternative data sources, fintech lenders may target and provide easy-access credit products to new customers. We find that after obtaining a focal fintech lender’s loan approval, borrowers receive more promotional messages from other fintech lending platforms, causing greater tendencies of subsequent new borrowing, personal expenditure, loan delinquency, and experiencing adverse social outcomes. This effect is stronger for borrowers with low financial literacy, limited credit access, and weak social insurance. Taken together, we document the economic and social consequences of fintech consumers’ overborrowing behavior.

报告人简介:

张博辉教授现任香港中文大学(深圳)经管学院执行院长、校长讲座教授。张教授还兼任深圳数据经济学院副院长、深圳高等金融研究院金融科技与社会金融研究中心主任、数据科学理学硕士项目主任、深圳市大数据研究院理事。张教授获得深圳市海外高层次A类人才,担任广东省深圳市决策咨询委员会专家、山东省淄博市决策咨询委员会专家委员。张教授曾于澳大利亚新南威尔士大学商学院任职终身正教授、国际金融中心副主任。张教授于2008年毕业于新加波南洋理工大学获得金融学博士学位,此前分别于2004年在香港科技大学获得经济学硕士学位和2003年在清华大学工程力学系获得工程学学士学位。张教授开展多个方向的研究,包括金融科技、可持续金融、信息媒介对资本市场的影响、中国和外国资本市场。他的研究成果多次发表在国际顶尖学术期刊上。张教授分别于2016年获得澳大利亚国家社会科学院授予的青年研究学者奖章和在2010年获得新南威尔士大学授予的青年研究学者奖章。他曾主持多项澳大利亚国家研究委员会基金项目、新南威尔士大学澳洲商学院研究基金、和参与中国国家自然科学基金面上项目。他现担任亚洲金融学会的副主席。


报告题目:数学解决现代金融学问题的基本逻辑---金融数学历史、问题、方法

报告所属学科:应用经济学

报告人:闫海峰(南京财经大学)

报告时间:2023年11月3日 10:00-12:30

报告地点:经管学院702室

报告摘要:

金融数学主要涉及数学、计算机、金融学等方面的基本知识和技能的综合运用,相关研究主要是应用数学和计算机工具研究金融,进行建模、理论与数值计算等定量分析。该报告主要交流金融数学的发展历史、现状、目前存在的问题及解决的基本思路,从而探讨数学解决现代金融学问题的基本逻辑。

报告人简介:

闫海峰,现任江苏紫金产业金融发展研究院院长,紫金农商银行外部监事,灌云农商银行独立董事,江苏网进科技公司独立董事。南京财经大学金融学院教授,原南京财经大学大学法学院党委书记,南京财经大学大学金融学院院长,南京财经大学江苏创新发展研究院院长,中国区域金融研究中心主任。江苏省高校“青蓝工程”中青年学术带头人,江苏省“333工程”培养计划第三层次培养对象。曾任江苏省保险学会副会长,江苏省金融学会常务理事,主要研究领域:金融风险管理、数理金融学、金融工程学、保险精算。先后主持国家自然科学基金、省级自然科学基金、哲学社会科学基金、软科学基金项目等十余项,在《Stochastic Models》,《Applied Mathematics and Mechanics》,《Progress in Natural Science》,《工程数学学报》,《系统工程学报》等国内外刊物发表学术论文70余篇。与新华社江苏分社和江苏有线电视台联合开设“钱先森到我家”专栏电视节目,作为主讲老师为政府机关干部做有关金融知识与宏观经济金融形势分析、为金融机构从业人员做商业银行金融风险管理、为上市公司高管做企业风险管理与高管激励机制、为社区大众做家庭资产配置与理财等专题培训讲座500余场。


报告题目:决策咨询报告撰写及报送经验分享

报告所属学科:管理科学与工程

报告人:丁宏(南京信息工程大学江北新区发展研究院)

报告时间:2023年11月3日 10:00-12:00

报告地点:经管学院704室

报告摘要:

以习近平总书记关于调查研究的重要论述出发,从调查报告的种类、选题、格式、撰写、报送五个维度全面阐述调查报告的具体内容及其在社会科学研究中的价值和意义,进一步加深青年教师对社会调研报告和智库成果的理解和实践运用。

报告人简介:

丁宏,南京信息工程大学江北新区(自贸区)发展研究院执行院长,二级研究员。省政府参事室特约研究员。江苏省社会科学院研究员。南京大学应用社会学博士。韩国东亚大学访问学者。南京市第六届经济社会发展咨询委员会委员。江苏省333高层次人才培养工程第2层次。南京市有突出贡献中青年专家。江苏省青年联合会第十届、第十一届委员。中国(江苏)自由贸易试验区方案主要起草者。先后主持多项国家、省部级课题研究;发表CSSCI及省部级以上党党刊等重要理论性文章60余篇;获得省哲学社会科学优秀成果奖一等奖1次、二等奖3次、三等奖1次,及其他省部级奖项多次;有100余篇咨询报告获省部级领导的重要肯定性批示。


报告题目:Large-Scale Datastreams Surveillance via Pattern-Oriented-Sampling

报告所属学科:管理科学与工程

报告人:Chen Nan(National University of Singapore)

报告时间:2023年11月9日 15:00-17:00

报告地点:经管学院702室

报告摘要:

Monitoring large-scale data streams with limited resources has become increasingly important for real-time detection of abnormal activities in many applications. Despite the availability of large datasets, the challenges associated with designing an efficient change-detection when clustering or spatial pattern exists are not yet well addressed. In this paper, a design-adaptive testing procedure is developed when only a limited number of streaming observations can be accessed at each time. We derive an optimal sampling strategy, the pattern-oriented-sampling, with which the proposed test possesses asymptotically and locally best power under alternatives. Then, a sequential change-detection procedure is proposed by integrating this test with generalized likelihood ratio approach. Benefiting from dynamically estimating the optimal sampling design, the proposed procedure is able to improve the sensitivity in detecting clustered changes compared with existing procedures. Its advantages are demonstrated in numerical simulations and a real data example. Ignoring the neighboring information of spatially structured data will tend to diminish the detection effectiveness of traditional detection procedures.

报告人简介:

Chen Nan is currently an Associate Professor at the department of Industrial Systems Engineering and Management at NUS. He is also the deputy head in charge of the graduate programs in the department. He obtained his Bachelor degree from Tsinghua University, Master and PhD degree from University of Wisconsin Madison. His research focused on data driven modelling, monitoring, and process improvement, with applications in manufacturing and service systems. He is currently, or has been the department editor of IISE Transactions, associate editor of INFORMS Journal on Data Science, associate editor of Technimetrics, etc.


报告题目:基于因果推断的工业大数据分析

报告所属学科:管理科学与工程

报告人:张晨(清华大学)

报告时间:2023年11月9日 9:00-10:30

报告地点:经管学院702室

报告摘要:

随着工业4.0的快速发展,生产过程中的各种变量得以被采集。通过分析其之间的有向因果关系,可以更好地描述变量间相互关联特性。然而,由于工业数据多源异构,包括高维向量、函数型数据等,推断其因果关系往往具有挑战。而工业场景多样,不同场景下变量之间因果关系相似但不同,如何共享数据,学习多场景下因果关系也具有难度。此外,工业系统动态时变,如何追踪因果关系变化,实现变点检测也非常重要。为了解决这些问题,本研究介绍了一系列针对工业大数据的因果网络模型以及变点检测算法,包括非线性有向无环图、多模态函数型数据有向无环图以及基于多任务联邦学习的图结构学习算法等。这些方法的应用将有助于更深入地理解工业过程中的因果关系和质量控制。

报告人简介:

张晨,清华大学工业工程系副教授。主要研究方向为基于统计学与人工智能的工业数据分析,包括复杂数据,如函数型数据、高维变量数据、网络数据、时间序列数据等的建模、因果推断与在线监控算法,研究成果发表在IISE Transactions, Journal of Quality Technology, IEEE Transactions,SIGKDD,AAAI,IJCAI等。研究成果获得美国质量协会ASQ、国际工业系统工程协会IISE、电气与电子工程师协会IEEE、运筹学和管理学研究协会INFORMS最佳论文奖十余项,获得教育部科学技术进步二等奖。主持完成国家自然科学基金项目2项、省部级和企业课题10余项,入选中国科协青年人才托举工程。


报告题目:A Field Experiment on AI-Assisted Physicians

报告所属学科:应用经济学

报告人:谭寅亮 (美国休斯顿大学)

报告时间:2023年11月10日 10:00-12:00

报告地点:腾讯会议 603-705-941

报告摘要:

AI assistants—software agents that can perform tasks or services for individuals—are among the most promising AI applications. However, little is known about the adoption of AI assistants by service providers (i.e., physicians) in a real-world healthcare setting. Specifically, we investigate the impact of AI smartness—whether the AI assistant is empowered by machine learning intelligence—and AI transparency—whether physicians are informed of the assistant feature. We collaborate with a leading healthcare platform to run a field experiment in which we compare physicians’ adoption behavior, i.e., adoption rate and adoption timing, of smart and automated AI assistants under transparent and non-transparent conditions. We find that AI smartness can increase the adoption rate and shorten the adoption timing, while AI transparency can only shorten the adoption timing. Moreover, the impact of transparency on the adoption rate is contingent on the smartness level of the assistant: AI transparency increases the adoption rate only when the AI assistant is not equipped with smart algorithms and fails to do so when the assistant is smart. Our study can guide platforms in designing their AI strategies. In particular, platforms should develop and apply smart AI algorithms in a

iding physicians, and also keep physicians informed on such development and application, especially when the smartness level of the algorithms is low.

报告人简介:

谭寅亮博士是美国休斯顿大学鲍尔商学院决策和信息科学终身教授,鲍尔讲席教授,以及供应链管理方向系主任。他同时还担任慧与科技数据科学研究中心 资深研究员。谭寅亮博士毕业于美国佛罗里达大学沃灵顿商学院,学习运营管理及信息系统。他拥有丰富的商业分析方面的教学经验,获得过弗里曼商学院年度最佳教师奖。其研究兴趣主要集中在数字经济,以及科技管理与创新等领域。他在国际顶级期刊(UTD 24种期刊)Management Science, MIS Quarterly, Information Systems Research, Production and Operations Management等发表超过20篇论文。谭教授现在担任Production and Operations Management(国际顶级期刊)的资深编辑, Decision Sciences Journal的部门编辑, 以及Information & Management的副编辑和Information Systems Research (ISR)的编委会成员。他于2019年被评为世界最佳40名40岁以下的商学院教授, 同年他获得了国际决策科学学会颁发的早期职业成就奖。他于2022年获得INFORMS 信息系统学会颁发的 Sandy Slaughter 早期职业成就奖,2023年度获得国际工业工程与运营管理学会颁发(IEOM Society International)的全球供应链与物流大奖以表彰其对领域做出的贡献。


分享:
友情链接
网站说明